Fatou's Lemma: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
Line 12: Line 12:
<math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>.
<math> \lim_{n\rightarrow +\infty} \int g_n=\int \lim_{n\rightarrow +\infty} g_n = \int \liminf_{n\rightarrow +\infty} f_n</math>.


Furthermore, by definition we have <math> g_n\leq f_n  \forall n \in \mathbb{N}</math>, then <math> \int g_n\leq \int f_n </math>.
Furthermore, by definition we have <math> g_n\leq f_n, \forall n \in \mathbb{N}</math>, then <math> \int g_n\leq \int f_n </math>.


Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides:
Since <math> \lim_{n\rightarrow +\infty} \int g_n </math> exists, taking <math> \liminf_{n\rightarrow +\infty} </math> of both sides:

Revision as of 02:32, 12 December 2020

Statement

Suppose is a sequence of non-negative measurable functions, . Then:

. [1]

Proof[2]

Define for all .

By definition, and , so by Monotone Convergence Theorem,

.

Furthermore, by definition we have , then .

Since exists, taking of both sides:

.

References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §2.2
  2. Craig, Katy. MATH 201A Lecture 14. UC Santa Barbara, Fall 2020.