Monotone Convergence Theorem: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
Line 1: | Line 1: | ||
== | ==Theorem== | ||
Suppose <math>\{f_n\}</math> is a sequence of non-negative measurable functions, <math> f_n: X \to [0,+\infty]</math> such that <math> f_{n-1} \leq f_{n} </math> for all <math>n</math>. | Suppose <math>\{f_n\}</math> is a sequence of non-negative measurable functions, <math> f_n: X \to [0,+\infty]</math> such that <math> f_{n-1} \leq f_{n} </math> for all <math>n</math>. | ||
Furthermore, <math> \lim_{n\to+\infty} f_n = f ( = \sup_n f_n) </math>. | Furthermore, <math> \lim_{n\to+\infty} f_n = f ( = \sup_n f_n) </math>. |