Outer measure: Difference between revisions

From Optimal Transport Wiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(10 intermediate revisions by 3 users not shown)
Line 1: Line 1:


: '''Definition.''' Let <math> X </math> be a nonempty set. An outer measure <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', Section 1.4 </ref> on the set <math> X </math> is a function <math> \mu^* : 2^X \to [0, \infty]</math> such that
: '''Definition.''' Let <math> X </math> be a nonempty set. An outer measure <ref name="Folland">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', §1.4 </ref> on the set <math> X </math> is a function <math> \mu^* : 2^X \to [0, \infty]</math> such that
* <math> \mu^* ( \emptyset) = 0 </math>,
* <math> \mu^* ( \emptyset) = 0 </math>,
* <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math>,
* <math> \mu^*(A) \leq \mu^*(B)</math> if <math> A \subseteq B</math>,
* <math> \mu^* (\cup_{j=1}^\infty A_j) \leq  \sum_{j=1}^\infty \mu^*(A_j).</math>
* <math> \mu^* \left(\bigcup\limits_{j=1}^\infty A_j \right) \leq  \sum_{j=1}^\infty \mu^*(A_j).</math>
The second and third conditions in the definition of an outer measure are equivalent to the condition that <math> A \subseteq \bigcup\limits_{i=1}^\infty B_i </math> implies <math>\mu^*(A) \leq \sum_{i=1}^\infty \mu^*(B_i)</math>.


: '''Definition.''' A set <math> A \subset X </math> is called <math> \mu^* </math>-measurable if <math>  \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \cap A^c)</math> for all  <math> E \subset X </math>.


: '''Definition.''' A set <math> A \subset X </math> is  <math> \mu^* </math>-measurable if <math> \mu^*(E) = \mu^*(E \cap A) + \mu^* (E \setminus A)</math> for all  <math> E \subset X </math>.
 
 
==Examples of Outer Measures==
 
The standard example of an outer measure is the Lebesgue outer measure, defined on subsets of <math>\mathbb{R}</math>.
 
:<math> \mu^*(A) = \inf \left\{ \sum_{i=1}^\infty |b_i - a_i| : A \subseteq \bigcup_{i=1}^\infty (a_i, b_i) \right\}. </math>
 
A near-generalization of the Lebesgue outer measure is given by
 
:<math> \mu^*_F(A) = \inf \left\{ \sum_{i=1}^\infty |F(b_i) - F(a_i)| : A \subseteq \bigcup_{i=1}^\infty (a_i, b_i] \right\}, </math>
 
where <math>F</math> is any [[right-continuous]] function <ref name="Folland2">Gerald B. Folland, ''Real Analysis: Modern Techniques and Their Applications, second edition'', §1.5</ref>.
 
Given a measure space <math>(X, \mathcal{M}, \mu)</math>, one can always define an outer measure <math>\mu^*</math><ref name="Craig">Craig, Katy. ''MATH 201A HW 3''. UC Santa Barbara, Fall 2020.</ref> by
 
:<math> \mu^*(A) = \inf \left\{ \mu(B) : A \subseteq B, B \in \mathcal{M} \right\}. </math>


==References==
==References==

Latest revision as of 06:58, 2 December 2020

Definition. Let be a nonempty set. An outer measure [1] on the set is a function such that
  • ,
  • if ,

The second and third conditions in the definition of an outer measure are equivalent to the condition that implies .

Definition. A set is called -measurable if for all .


Examples of Outer Measures

The standard example of an outer measure is the Lebesgue outer measure, defined on subsets of .

A near-generalization of the Lebesgue outer measure is given by

where is any right-continuous function [2].

Given a measure space , one can always define an outer measure [3] by

References

  1. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §1.4
  2. Gerald B. Folland, Real Analysis: Modern Techniques and Their Applications, second edition, §1.5
  3. Craig, Katy. MATH 201A HW 3. UC Santa Barbara, Fall 2020.