New article ideas: Difference between revisions
Jump to navigation
Jump to search
Line 4: | Line 4: | ||
==The Optimal Transport Problem== | ==The Optimal Transport Problem== | ||
* Monge Problem | Unless otherwise specified, all topics are for general cost functions ''c(x,y)''. | ||
* Kantorovich Problem | * Monge Problem; Villani (3-4, 6-9), Santambrogio (xiv-xvii,1-9) | ||
* Kantorovich Problem; Villani (1-3, 6-9), Santambrogio (xv-xvii,1-9) | |||
* Kantorovich Dual Problem (for general costs); Villani (17-21), Santambrogio (9-16) | * Kantorovich Dual Problem (for general costs); Villani (17-21), Santambrogio (9-16) | ||
* Kantorovich Dual Problem (for <math> c(x,y) = d(x,y) </math> where <math> d </math> is a metric); Villani (34) | * Kantorovich Dual Problem (for <math> c(x,y) = d(x,y) </math> where <math> d </math> is a metric); Villani (34) | ||
Line 12: | Line 12: | ||
* Optimal Transport and the Monge Ampère equation; Santambrogio (xvi, 54-57) | * Optimal Transport and the Monge Ampère equation; Santambrogio (xvi, 54-57) | ||
* Narrow Convergence: Prokhorov and Portmanteau Theorems ('''Katy will add refs''') | * Narrow Convergence: Prokhorov and Portmanteau Theorems ('''Katy will add refs''') | ||
==Numerical Methods for Optimal Transport== | |||
* Discrete Optimal Transport; Villani (5), Santambrogio (235-237) | |||
* Auction Algorithm; Santambrogio (238-240) | |||
* Entropic Regularization; Santambrogio (240-241) | |||
* Semidiscrete Optimal Transport (for <math> c(x,y) = |x-y|^2 </math>); Santambrogio (242-248) |
Revision as of 23:28, 8 April 2020
Below, you can find a list of new article ideas and suggested references. (Feel free to incorporate additional references! Please list all references you use at the bottom of your article.) If you choose to write about one of these ideas, remove it from the list below and create a new link on the main page.
Want to write about something that's not listed here? Email me!
The Optimal Transport Problem
Unless otherwise specified, all topics are for general cost functions c(x,y).
- Monge Problem; Villani (3-4, 6-9), Santambrogio (xiv-xvii,1-9)
- Kantorovich Problem; Villani (1-3, 6-9), Santambrogio (xv-xvii,1-9)
- Kantorovich Dual Problem (for general costs); Villani (17-21), Santambrogio (9-16)
- Kantorovich Dual Problem (for where is a metric); Villani (34)
- Kantorovich Dual Problem (for where is a metric); Santambrogio (16-18)
- Optimal Transport and the Monge Ampère equation; Santambrogio (xvi, 54-57)
- Narrow Convergence: Prokhorov and Portmanteau Theorems (Katy will add refs)
Numerical Methods for Optimal Transport
- Discrete Optimal Transport; Villani (5), Santambrogio (235-237)
- Auction Algorithm; Santambrogio (238-240)
- Entropic Regularization; Santambrogio (240-241)
- Semidiscrete Optimal Transport (for ); Santambrogio (242-248)